
Design of a Neuronal Training Modeling Language
Exemplified with the AI-Based Dynamic GUI Adaptation

Marcus Grum1*[0000-0002-3815-4238], Werner Hiessl2, Karl Maresch3, Norbert Gronau1

1 University of Potsdam, Potsdam 14482, Germany
2 Asseco Solutions AG, Germany

3 Salesbeat GmbH, Welser Str. 26, 4060 Leonding, Austria
* mgrum@lswi.de

Abstract. As the complexity of learning task requirements, computer infrastruc-
tures and knowledge acquisition for artificial neuronal networks (ANN) is in-
creasing, it is challenging to talk about ANN without creating misunderstandings.
An efficient, transparent and failure-free design of learning tasks by models is
not supported by any tool at all. For this purpose, particular the consideration of
data, information and knowledge on the base of an integration with knowledge-
intensive business process models and a process-oriented knowledge manage-
ment are attractive. With the aim of making the design of learning tasks express-
ible by models, this paper proposes a graphical modeling language called Neu-
ronal Training Modeling Language (NTML), which allows the repetitive use of
learning designs. An example ANN project of AI-based dynamic GUI adaptation
exemplifies its use as a first demonstration.

Keywords: AI and Business Informatics, Development of AI-based Systems,
AI-Based Decision Support System, Cooperative AI (Human-In-The-Loop),
Process-oriented Knowledge Acquisition, Modeling Language.

1 Introduction

Faced with an increasing complexity of IT infrastructures [1], providing greater num-
bers of autonomous systems and decentralized data sources because of Internet of
Things and cloud computing [2], learning tasks in the sense of Artificial Intelligence
(AI) are becoming more complex to design: the location of data occurrence, knowledge
generation and knowledge use are decoupled. Beside the integration of knowledge car-
riers, companies are often challenged regarding the acquisition and harmonization of
knowledge, information and data for the training design for Artificial Neuronal Net-
works (ANN). Regrettably, prominent representatives of programming libraries and
tools do not support the specification of training and testing sets from various sources
and from different knowledge carriers. Further, they do not consider underlying (busi-
ness) process models. A graphical notation in the sense of a modeling language is only
provided by the CoNM [3], which is overwhelming because of numerous modeling
items and perspectives but technically satisfying. Hence, an efficient communication

2

with customers about training runs for ANN is lacking and the need for a neuronal
training modeling language (NTML) becomes apparent.

Although not limited to it, ERP contexts in particular are suited for the demonstration
of this NTML because first, ERP software directly supports business processes and
second, this kind of software refers to applications that are able to flexibly adapt to its
current software users with the aid of ANN. Here, the Graphical User Interface (GUI)
serves as target for learning. It is understood as a kind of dashboard, which is decom-
posed to GUI elements. As this adaptation can satisfy various dimensions, this contri-
bution focuses on the adaptation of the software’s appearance in regard with GUI ele-
ments. Hence, the question gains in significance how a dynamic GUI adaptation can be
specified as learning task for ANN as well as how a learning task can be visualized in
order to support an efficient communication about ANN designs and corresponding
results. In this context, the following research questions are pertinent:

1. How can AI-based learning tasks be specified with the aid of a modeling language?
2. How can dynamic software interface be optimized by AI-based GUI adaptations?
3. How can AI-based recommendations be considered without depriving the responsi-

bility of software users and vendors?

The questions gain in significance in regard with usability contexts as inefficient soft-
ware interface designs worsen the performance of software users. This paper intends
not to discuss concrete ANN architectures. It focuses on the effective modeling of learn-
ing tasks for the sophisticated CoNM tool use.

According to the DSRM of [4, 5], the remainder structures as follows. The second
section presents the theoretical foundation of an dynamic GUI adaptation as well as
training specification and it identifies current tools as inadequate to specify both. The
third section provides a methodological proceeding, which will be applied for the
demonstration of the NTML design. The fourth section designs artefacts required for
the specification of a dynamic GUI adaptation learning task. In the fifth section, arte-
facts are demonstrated with the aid of an ERP prototype software. While its evaluation
is presented in a fifth section, the final section concludes the paper.

2 Theoretical Foundation

AI Learning and ANN. State-of-the-art representatives of programming libraries, such
as Theano [6], Caffe [7], PyTorch [8], TensorFlow [9], provide graphical representation
mechanisms for ANN implemented, which are more or less interactive. Modeling no-
tations for ANN, such as LEMS [10] or NeuroML [11] enable the graphical specification
of ANN, but do not consider technical implementations adequately. Since only the
CoNM [3] can be considered as graphical ANN modeling approach, that results in ANN
implementations adequately and enables the interactive specification of (a) underlying
(business) process models, (b) organizational knowledge bases and (c) relevant ANN
systems, its Neuronal Modeling and Description Language (NMDL) seems to be an
adequate foundation for this contribution. However, as the NMDL enables the sophis-
ticated specification of required parameters for various domains, such as the concrete

3

training course, specific testing strategies, their evaluation and competence-oriented
verification in simulation runs and corresponding model management as well as their
biological compartments, the language designed here focuses on the training only.

Dynamic GUIs. Graphical user interfaces (GUI) provide software interfaces that fol-
low underlying software process models: if a certain button is activated or the software
state changes, the current view changes and dynamically provides relevant GUI ele-
ments. Advanced systems reflect (business) process progresses on behalf of messages
sent by workflow engines [12]. An application providing an adaptable GUI, which
builds on AI-based recommendations, and adapts to arbitrary many criteria, such as the
user’s preferences and process progresses, therefore provides a new level of flexibility.

Knowledge & Process Modeling Languages. Prominent representatives of (business)
process and knowledge modeling languages enable the specification of many perspec-
tives, such as the behavioral, functional perspective, informational, knowledge, organ-
izational and communication perspectives [13–15]. Here, one can find the eEPC [16],
BPMN [17], UML 2 [18] as process modeling languages and the Promote [19], GPO-
WM [20], KMDL [21], NMDL [3] as process-oriented knowledge modeling languages.

As only the NMDL modeling approach considers both, business processes as well
as knowledge for the specification of ANN learning, the following therefore builds on
the most current and sophisticated version of the NMDL. It is the only representative
providing a meta-model that satisfies the sophisticated collection of common perspec-
tives presented [15]. However, the following focuses on the minimal set of modeling
items required for the effective learning task specification.

Research Gap. A modeling language having the minimal set of modeling items at all,
enabling the interactive explication of ANN learning tasks on the base of underlying
(business) process and knowledge models has not been realized, yet. Further, an ANN
visualization enabling the interactive explication of the question, how knowledge is
acquired and in which process knowledge generated by ANN is used, is still missing at
a minimal set of modeling items, too. In their joint consideration, the research gap for
this contribution becomes apparent.

3 Method

Methodology. The methodological approach of this research contribution follows the
design-science-oriented method of Peffers et al. [4, 5]. As we suggest for the definition
of learning tasks, such as the improvement of inefficient GUI designs, a model for the
proceeding is established, that considers knowledge for the specification of learning
tasks in the sense of knowledge management with the aid of a modeling language.

Proceeding. The procedure model has been used for demonstration purposes in this
contribution. Similar to [1], one can observe seven sequential phases, although each

4

phase allows the returning for previous phases. So, an iterative proceeding is enabled,
which supports the failure tolerant modeling close to real-world.

The first phase refers to the acquisition of ANN projects, and includes contractual
issues, sales, and marketing, among others.

The second phase defines the focus of the learning task. This includes definitions
about temporal dynamics, learning modes (supervised, unsupervised and reinforced
learning) [22], codification schemes [23], learning problems (clustering, classification
and regression) [24] and the intended ANN performance.

Within the third phase, the modeling of knowledge-intensive processes is realized,
which will serve as foundation for the definition of learning tasks. Here, processes are
selected, which are relevant for the specification of the learning task intended.

In the fourth phase, the knowledge generation is specified. This issues questions
about knowledge carriers, the identification of information systems as knowledge bases
and the characterization of knowledge objects. Further, the knowledge use is specified,
so that it becomes clear, how ANN-based results are considered for the realization of
processes, such as business processes or processes about the adaptable GUI design.

In a fifth phase, the learning task can be specified with the aid of models constructed
so far. This will be the foundation for the automated data collection and set realization,
so that a learning can be carried out efficiently.

In a sixth phase, the ANN technique, will be trained, tested and evaluated, up to the
point the AI satisfies the performance agreed with. As this phase probably demands for
specialized proceedings supporting individual ANN technique aspects, specialized pro-
ceedings can be nested here in the sense of a mixed method [25, 26].

Lastly, in a seventh phase, the AI system is continuously run, maintained and im-
proved in the sense of CIP [27].

4 Design

The design of a modeling language enabling the specification of knowledge use for
ANN learning tasks is realized as follows. First, in the sense of the DSRM, require-
ments are collected, which are independent form the design. Intending to consider re-
quirements collected and design decisions made (section 4.1), the sections 4.2 and 4.3
generate a solution, which will be applied to a demonstration example in the fifth sec-
tion.

4.1 Requirement Collection

Demands for the modeling of an AI-based dynamic GUI adaptation are grouped by
individual design artefacts. Here, one can find the language aiming to specify learning
tasks. Further, there are requirements focusing on a concept for the GUI adaptation.

5

Modeling Language Requirements. Focusing on the specification of the training
modeling language, the design needs to satisfy research consensus about process mod-
eling language construction. Further, it needs to enable the state-of-the-art of ANN
training. By this, the design needs to…

1. …follow a process modeling language meta-model. Here, any relation will be visu-
alized, so that modeling rules become apparent.

2. …consider the current design of an organization’s business processes. Here, any
kind of knowledge-intensive process relevant for a learning tasks is issued.

3. …make the organization’s current knowledge base accessible for the learning.
Here, any kind of knowledge carrier and various knowledge forms are issued.

4. …characterize the knowledge generation, which considers dynamic aspects of
knowledge and so complements the current knowledge base.

5. …specify learning tasks, so that the learning objective becomes apparent. This in-
cludes the specification of training and test sets and issues the data, information and
knowledge use for learning tasks.

6. …characterize the knowledge use, so that it becomes clear in which context and in
which business process of an organization AI-based results are applied.

GUI Requirements. Focusing on the specification of the AI-based dynamic GUI ad-
aptation, the design needs to satisfy the research consensus about software interface
construction. Further, it needs to apply state-of-the-art ANN training. By this, the de-
sign needs to…

7. …consider the user’s current process context. Particularly, ERP systems here pro-
vide a sophisticated base of business process descriptions. Just because of the view
of a user on a process-specific software interface, a current state within a process
system can be derived.

8. …consider the user’s current profile (industry, company, domain, etc.).
9. …consider the user’s interaction with the software. Each click, mouse movement or

GUI element-specific change is valuable in the context of a learning task.
10. …consider the vendor’s expertise, who has gained a high specialization in various

industries and is able to provide optimal designs. Hence, aside of an AI-based rec-
ommendation, a vendor-based adaptation is attractive.

11. …consider the community’s recommendations, who have collected experiences in
the daily software use. Hence, aside of an AI-based recommendation, a community-
based adaptation is attractive.

12. …allow the software user’s decision for or against an adaptation. This refers to a
self-determined and self-responsible software use, so that the software user is not
incapacitated and overrun by an AI system.

13. …consider the transfer of knowledge about GUI elements. This refers to first, the
transfer of GUI elements and second, the transfer of knowledge about the use of GUI
elements.

6

Design Decisions. Going beyond the definition of requirements, that an artefact needs
to satisfy in order to serve as problem solution, a collection of design decisions limits
the degree of freedom artefacts can follow for the course of requirement satisfaction.
Here, one can find the following:

1. Each visual element is considered as process instance. This enables GUI elements to
be dynamic and to be modeled by a modeling language.

2. Each process instance follows an individual life cycle. This allows GUI elements to
be brought to life and to have a lifespan.

3. Knowledge can be derived by an creation of a process instance. So, others can profit
from someone’s positive attitude about a GUI element.

4. Knowledge can be derived by an destruction of a process instance. So, others can
profit from someone’s negative attitude about a GUI element.

5. Knowledge can be derived by any modification of a process instance. This includes
changes in the general software interface design as well as changes in the current
software interface configuration, so that other users can profit from someone’s GUI
element configuration.

4.2 Design of an Adaptive GUI

The design component of an adaptive GUI refers to a concept, that enables the flexible
adaptation of software interface elements in general. For this, each GUI element is con-
sidered as individual process having a lifespan. As the adaptation of GUI elements shall
include knowledge from various kinds of knowledge carriers, further, a concept for the
abstract knowledge use is designed thereafter.

Adaptivity by Life Cycle Design. Each software interface element, that is intended to
be part of an adaptation process, is assumed to be dynamic and therefore can be mod-
eled with the aid of a process modeling language. The dynamic process understanding
is operationalized by a life span, which starts with the placement within the software
interface and ends with the deletion from the software interface. The process of this life
cycle form the view point of a GUI element, is visualized in Fig. 1.

Fig. 1. Life-Cycle for Visual Process Instances (Process View).

KI-Life-Cycle

Offering of
Process Instance

User-Induced
Acquisition

Use of
Process InstanceXOR

Standard
Configuration

Exit of Process
Instance

Update by
Vendor

Individual
Creation

Update by
Vendor

Individual
Modification

XOR

Legend:

Denomi-
nation

OR Boolean Operator

Control FlowProcess Step

Denomi-
nation

Master Process Step

IS

Part-Of Relationship

Information system

Non-Atomic Process Expandable

Non-Atomic Process ReducibleDenomi-
nation -

Denomi-
nation +

7

Either an element is brought to the software interface as part of the standard configura-
tion of a software, which is determined by a software vendor, or it is brought to the
software interface latterly by three options: First, the software user acquires software
interface elements by decision from a pool of software interface elements offered.
These can be recommended by an AI-based system, by the vendor or by the software
user community. Second, it is updated by the vendor e.g. because an adaptation goes
along with security relevant changes. Here, the software is updated by decision of the
vendor. Third, software interface elements are created by the individual software user.
As the creation might help others to optimize their current software interface, by deci-
sion, the software user can transfer software interface elements to the community.

Abstract Knowledge Use Design. Independent from the question who constructs a
certain software interface element, one and the same software interface element will
appear in a different form, when it is included at a user’s software interface. This is
because it will operate on a different data base. Hence, for the provision, software in-
terface elements are abstracted, so that the core functionality is specified. Later, for the
recommendation, the software interface element is provided as abstract concept, that
adapts to the individual software context of a user.

4.3 Design of an Neuronal Training Language

The design component of a modeling language, that is able to flexibly and efficiently
specify learning tasks, such as the adaptive software interface element recommenda-
tion, is carried out in the following. Fig. 2 presents its meta-model, which shows any
relation possible. Each view is exemplified in the following.

Fig. 2. Meta-Model of Neuronal Training Modeling Language.

Process View

Activity View

EKO

TKO

EKO +

TKO +

EKO -

TKO -

Activity EKO

TKO

EKO +

TKO +

EKO -

TKO -

IS

Per-
son

IS

Per-
son

B

Process

Process
-

Process
+

B

Process

Process
-

Process
+

B

Process

Process
-

Process
+

Process Overview

Knowledge Overview

EKO + TKO +

IS Per-
son

EKO -IS

EKO

IS

TKO -
Per-
son

TKO

Per-
son

EKO -

IS

TKO -

Per-
son

Process

Process
-

Process
+

Process
-

Activity Overview

Activity

Activity Activity Activity

-

+-

Set View

,ETOETOETO TKO

IS PersonIS IS

TKOTKO

PersonPerson

ETOETOETO TKO

IS PersonIS IS

TKOTKO

PersonPerson

+ + + +-- --

Legend:

Boolean Operator

Control Flow (Process View)
Knowledge Flow (Activity View)

Denomi-
nation System Border

IS

Per-
son

Part-Of Relationship

Taxonomic Relationship

Information System and
Autonomous System

Autonomous Knowledge
Carrier

Denomi-
nation Atomic Process

Non-Atomic Process Expandable

Non-Atomic Process ReducibleDenomi-
nation -

Denomi-
nation +

Denomi-
nation

Denomi-
nation

Denomi-
nation +

Denomi-
nation +

Denomi-
nation -

Denomi-
nation -

Atomic Explicit Knowledge

Non-Atomic Explicit Knowledge Expandable

Non-Atomic Explicit Knowledge Reducible

Atomic Tacit Knowledge

Non-Atomic Tacit Knowledge Expandable

Non-Atomic Tacit Knowledge Reducible

B

Denomi-
nation Atomic Activity

Non-Atomic Activity Expandable

Non-Atomic Activity ReducibleDenomi-
nation -

Denomi-
nation +

… , …
Set Specification (Oriented to
Mathematical Matrix Notation)

8

Process View. The behavioral perspective on business processes and processes speci-
fying the routing through a software system is specified by the Process View. These
consist of a sequence of modeling elements, such as process steps, sometimes referred
to as tasks, Boolean operators as well as a control flow relating modeling elements.
Further, this perspective specifies the sequential proceeding of the training of AI-based
systems.

Process Overview. Processes are collected by a taxonomic Process Overview. For the
purpose of AI-based GUI applications, these e.g. can contain a representation of GUI
elements according to process understanding presented in section 4.2. Since this view
does not only provide a hierarchical ordering of process steps, it supports the modeling
of different levels of abstraction, granularity and topics. With this, it makes GUI ele-
ments decomposable to an arbitrary level of granularity, so that GUI elements can be
considered as a group or as various individual compartments.
Analogous to the Process Overview, the Activity Overview provides the taxonomic view
on activities. It therefore enables the knowledge acquisition on various levels of ab-
straction, granularity and topics.

Knowledge Acquisition. The Activity View specifies, which knowledge is provided by
a certain knowledge carrier. Here, data and information streams are characterized, that
mainly can be found at IT systems. Within the context of a certain learning task, they
serve as explicit knowledge object. Implicit and non-transparent knowledge, that is
mostly provided by humans and more recently by AI-based systems and CPS, is mod-
eled by tacit knowledge objects. Since each Activity View characterizes the knowledge
perspective of a certain process step or task, these are related by an 1-m relationship.
This supports the presentation of clean models.

Knowledge Refinement. Acquired knowledge is characterized by the Knowledge
Overview, so that a domain-specific hierarchy can be established. This view is not just
hierarchical, since it supports the modeling of different levels of abstraction, granularity
and topics of knowledge objects. By this, various orderings can be established depend-
ing on the current issue considered. Here, the very bottom level, an atomic knowledge
object refers to numbers, with which an ANN learning will be carried out. Because of
the hierarchical arrangement of knowledge objects, the dealing with a learning task can
be considered at different observation levels and this view provides the foundation for
the set specification.

Set Specification. With the aid of the Process View, it is specified at which process
step knowledge is acquired. As process steps are ordered by the Process Overview, this
specification is realizable on various processual levels. With the aid of the Activity
View, knowledge is acquired for any processual level. Analogous, the Activity Overview
enables the knowledge description on arbitrary knowledge levels. Since each
knowledge object is part of a taxonomic network (Knowledge Overview), either, simple
training and test set designs can be based on an abstract level dealing with knowledge

9

objects technically representing a group of concrete knowledge objects, or more de-
tailed set designs consider the concrete knowledge objects themselves. This is realized
with the aid of the Set View, which can be used for the design of numerous trainings
and test sets on behalf of any knowledge specified so far.

5 Demonstration of NTML and Dynamic GUI Adaptation

In accordance with the procedure model presented in section 3, the following presents
the demonstration of artefacts designed in section 4. As a software prototype, Asseco’s
ERP system called ap+ was chosen, for which GUI elements were intended to flexibly
adapt to the interests of its users. The AI-based learning task was intended to be mod-
eled with the aid of the NTML and so demonstrates the dynamic GUI adaptation on
behalf of AI. The final GUI prototype can be found in Fig. 3. First, the prototype will
be exemplified, then the corresponding NTML modeling use will be presented.

Fig. 3. AI-Based Software Interface Recommendations (Software Prototype ap+).

Here, one can see the dashboard region right within the software interface. It consists
of a collection of individual dashboard items. On the right of the software interface, AI-
based recommendations for further dashboard items are presented. Further, commu-
nity-based and individually created, local software interface elements are provided by
separate tabs. Only when the user accepts a certain software interface element, it is
positioned within the dashboard region.

Faced with this kind of presentation, the design for the Abstract Knowledge Use
becomes apparent. Each software interface element provided considers the user’s data
base although it was designed on behalf of someone else’s data base. So, the thumbnail
window will meet the expectations, when the user has accepted an element, although it
was designed within somebody else’s context.

Offers

Portals

Dashboards

Orders

Shipping

Invoices

Contracts

Price Lists

Costing

Master Data

Payment Plan

Sales

Addresses

Documents Entry

Offer Editing

Offer Statistic Creation

Order Editing

Offer Entry Statistic…

Order Statistic Creation

Configuration

Companies

Addresses

Products

hk

hk (ENOWA) [hk]
Auto Upate

 AI Search Local

Scheduling My Hashtags Release Products

LiquidityDeliveralsPurchase Information

New Idea Layout Adding

State No

Hashtag Value Picture ID Name

Order Id Co… Part Shipment

#Sales #Orders #Delivery
Open Outgoing Goods Having
Closed Orders

#Sales #Offer
Offers Decision Date

#Purchase #Orders
Orders by State

Open Reminders 112

Connector

Fire Prote…

Impedanc…

TF0001

10-1010111

TF0002

Capacity
Aasigem.
Is Values

Overdue Requests

Open Request Warnings
Non-Confirmed Orders
Orders Having Delivery Amount >95%
Open Order Warning Positions

Contracts with Degree of Fulfillment >90%
Contracts Ending in 4 Weeks
Product Supplier Relation Ending in
less than 4 Weeks

0
0
37
0
112

2
0
493

10

As this software interface suits for both, knowledge origin and destination, the fol-
lowing shows how knowledge is accessed through the use of the software prototype
and how knowledge is used in order to improve the software use by recommendations.

The Process Overview considers GUI elements as processual elements following the
life cycle defined in Fig. 1. Beside furthers, such as menu elements, shortcut elements,
etc., Fig. 4 presents elements of the dashboard region only (Fig. 1), which consists of a
collection of dashboard items from 1 to n.

Fig. 4. Taxonomic Overview of GUI Process Instances (Process Overview).

In the example presented, Dashboard Item 1 is characterized in detail. Its position refers
to the placement within the dashboard region, such as the ordering id or x axis and y
axis. A title can be placed at the top of the dashboard container, that refers in the case
of Dashboard Item 1 to “Scheduling” of Fig. 3. The diagram element consists of three
curves and a corresponding legend. Next to the title, one can see three buttons providing
a predefined functionality. The possibility to expand non-atomic process steps is indi-
cated by a “+”. The corresponding possibility to minimize expanded process steps is
indicated by a “-”. At the very bottom level, e.g. for the “Button ‘More’”, one can see
the reference to the Life-Cycle (section 4.2).

Considering the Activity View, the knowledge acquisition is specified. Learning ma-
terial can be found at the process called “User-Induced Acquisition” and “Exit of Pro-
cess Instance” (Fig. 1) and is characterized in Fig. 5.

Fig. 5. Knowledge Acquisition for Visual Process Instances (Activity View).

Legend:

Taxonomic Relationship

Denomi-
nation Atomic Process

Non-Atomic
Process Expandable

Non-Atomic
Process Reducible

Denomi-
nation -

Denomi-
nation +

Dashboard
Item 1

Diagram

Curve 1 Legend

Title

Curve 2 Curve 3

Button
“Position“

Button
“Size“

Button
“More“Position

Dashboard
Item … +

Dashboard
Item 2 +-

Dashboard
Item n +

Dashboard
-

…

KI-Life Cycle

+ + + + + -

+ + + +

User-Induced Acquisition of Process Instance XY

Click on Accept
Button to Create
Process Instance

KO

Software User B

 Process
Context

User
Role

Acquisition
of Process

Instance XY

Company
Profile

User
Profile

Industry
Profile

ap+

CRM

Exit of Process Instance XY

Click on Delete
Button to Destruct
Process Instance

KO

Software User C

 Process
Context

User
Role

Abandonment
of Process

Instance XY

Company
Profile

User
Profile

Industry
Profile

ap+

CRM

ap+ ap+

+

+

+

+

+

+

+

+

+

+

11

Learning material refers to technical parameters, such as the company profile, the in-
dustry profile and user profile, are provided by the CRM system. The user’s role and
process context is provided by the ERP system.

Here, a recommendation for a certain GUI instance is identified by the acceptance
of its process instance at the process step “User-Induced Acquisition”. Alternatively, a
recommendation could have been based on its use for a certain period. A recommenda-
tion against the corresponding GUI instance is identified by the destruction of its pro-
cess instance at the process step “Exit of Process Instance”. Alternatively, a recommen-
dation could have been on the base of a non-acceptance, e.g. when GUI instance are
suggested one by one and a next button is clicked.

On behalf with this learning material, training and test sets can be established com-
fortably. They so specify the underlying learning tasks efficiently. Fig. 6 exemplarily
shows how knowledge objects are arranged in order to specify the test set for the learn-
ing tasks called “Offering of Process Instance XY”.

Fig. 6. Training Set Definition (Set View).

Since knowledge objects are characterized incl. their taxonomic relationship by the
Knowledge Overview, a set definition be concretized by the expansion and reduction in
the Set View as desired. Fig. 7 presents the corresponding visualization.

Fig. 7. Knowledge Taxonomy for Visual Process Instances (Knowledge Overview).

Training Set for the Activity "Recommendation of Process Instance XY“

,

Training Set for the Activity "Recommendation of Process Instance XY“

,x y

User
Profile +

Industry
Profile +

Company
Profile +

User
Role +

 Process
Context +

 Recommendation of
Process Instance XY +

User Knowledge about
Process Instance XY +

ap+ CRM Asseco’s AI

Software User B Software User C

ap+

Taxonomy of Recommendation of Process Instance XY

KO

Software User B

 Process
Context

User
Role

Acquisition
of Process

Instance XY

Company
Profile

User
Profile

Industry
Profile

ap+ CRM

KO

Software User C

Abandonment
of Process

Instance XY

KO

Asseco’s AI

Recommend.
of Process

Instance XY

User Knowledge
about Process
Instance XY

ap+ ap+

JuniorSales Product 3 State nTask 3 Process
Context

Company
Profile AgeSexTrend Section

Recommend.
of Process

Instance XY

-
---- -

-

-

Legend:

Control Flow

IS

Per-
son

„Part Of“ Relation

Taxonomic RelationDenomi-
nation

Taxonomic System Border

Information System

Autonomous Knowledge CarrierEKO Atomic Explicit Knowledge Obj.

EKO Non-Atomic Explicit
Knowledge Obj. Expandable

EKO Non-Atomic Explicit
Knowledge Obj. Reducible

TKO

TKO

TKO

+

-

Atomic Tacit Knowledge Obj.

Non-Atomic Tacit
Knowledge Obj. Expandable

Non-Atomic Tacit
Knowledge Obj. Reducible

+

-

12

Here again, the possibility to expand non-atomic knowledge objects is indicated by a
“+”. The corresponding possibility to minimize expanded knowledge objects is indi-
cated by a “-”.

Having defined the learning tasks by the knowledge acquisition for visual process
instances, the knowledge use can be specified at the process step called “Offering of
Process Instance” (Fig. 1), which is characterized by Fig. 8.

Fig. 8. Knowledge Use for Visual Process Instances Recommendation (Activity View).

Here, it is specified how recommendations of the AI-based system on the base of an
ANN are used within the software prototype called ap+. Since any GUI element is con-
sidered as an individual process instance, which is positioned thoughtfully within its
taxonomic hierarchy (Fig. 4), each accepted dashboard element can be refined by the
process step “individual modification”. Similar to the “user-induced acquisition” pro-
cess step, here, each kind of activity generates knowledge. E.g. one could reposition a
dashboard item or one could select the configuration parameter of a permanent pres-
ence of a dashboard item.

6 Evaluation

Being faced with requirements collected in section 4.1, the following evaluates in-
howfar artefacts designed have been satisfied within the demonstration of section 5. In
total, all requirements formulated have been satisfied with artefacts demonstrated.

NTML. The requirements of the NTML are satisfied as follows. Req. 1 is satisfied by
Fig. 2. The organization’s business processes as well as its current knowledge base is
satisfied by the Process View (Req. 2) and the Activity Overview (Req. 3). The
knowledge generation and use is issued with the Activity View (Req. 4, 6) and exempli-
fied in Fig. 5 and Fig. 8. The learning tasks are explicable by the Set View designed
(Req. 5) and exemplified with Fig. 6.

Offering of Process Instance XY

Recommendation
of Process Instance

XY

KO

Asseco’s AI

 Process
Context

User
Role

Recommend.
of Process

Instance XY

Company
Profile

User
Profile

Industry
Profile

ap+

CRM

ap++

+

+

+

+

+

13

GUI Adaptation. The requirements of the GUI adaptation are satisfied as follows. The
user’s process context (Req. 7) and profiles (Req. 8) are considered for the generation
(Fig. 5), the set definition (Fig. 6) and use within the process (Fig. 8). Direct interactions
of the user with the software are separated by individual processes within the Process
View (Fig. 1) and the specific activation as activity within the Activity View (Fig. 5 and
Fig. 8). Further, recommendation of the vendor (Req. 10) and the community (Req. 11)
are issued in Fig. 1 and exemplified as prototype in Fig. 3. The specific activity for an
creation or destruction (Fig.5) and AI-based recommendation (Fig. 8) clarifies how a
self-determined and self-responsible software use in cooperation with AI can be real-
ized (Req. 12). The transfer of knowledge is considered (Req. 13) by first, the provision
of GUI elements by process design (Fig. 1) with the aid of the Abstract Knowledge Use
Design and by second, the acquisition and use of knowledge about the use of GUI ele-
ments, which corresponds to the ANN learning tasks exemplified.

Design Decisions. Decisions about the design have been considered as follows. Dec. 1
has been considered by the interpretation of GUI elements as process elements (Fig. 4).
Their appearance and disappearance (Dec. 2) have been considered by the life cycle
(Fig. 1). How knowledge is derived (Dec. 3-5) becomes apparent in Fig. 5.

All in all, requirements and design decisions have been considered jointly by artefacts
designed and demonstrated with the aid of the software prototype ap+.

7 Conclusion

Summary. The first research question (“How can AI-based learning tasks be specified
with the aid of a modeling language?”) can be answered with the provision of a mod-
eling language, which is adequate for the specification of learning tasks for ANN e.g.
As the precise AI-algorithms are not concretized by the NTML, any other form of AI
algorithm can be associated with this learning task, such as evolutionary algorithms,
fuzzy systems, Bayesian networks or probabilistic methods [28]. Since the NMDL en-
ables the graphical modeling, designs can be constructed cooperatively with the aid of
modeling tools. Because of the consideration of business process models and the or-
ganization’s current knowledge bases, a modeling of AI-based learning tasks is ade-
quate. As one example design was presented, it has been demonstrated in the context
of GUI element recommendation on the basis of supervised ANN algorithms. Please
remark here, that the specific background of that ERP system is not necessary for the
method to work, but it demonstrates the functioning of the approach presented in a real-
world application context.

The second research question (“How can dynamic software interfaces be optimized
by AI-based GUI adaptations?”) can be answered on a level of general overview of
dependencies by the provision of an understanding of GUI elements as process. This
includes their atomic process characterization with the aid of a life span. Further, since
AI-based recommendations go along with the knowledge transfers from source users
to the vendor as intermediary and from the vendor to target users, the Abstract

14

Knowledge Use Design enables the user-independent possibility to externalize
knowledge. This has been demonstrated by an example.

The third research question (“How can AI-based recommendations be considered
without depriving the responsibility of software users and vendors?”) can be answered
with the provision of an adaptive life cycle design for GUI elements. Since this consid-
ers the user as final decision instance for the overtaking, creation, modification or de-
struction of objects of decision, that refer in this example to GUI elements, the respon-
sibility of the user is not deprived. The user’s freedom is only limited, if the vendor
provides security relevant, critical GUI changes.

Jointly, concepts provided draw an artefact, that enables the AI-based, dynamic GUI
adaptation. With this, in the long run, a surface is constructed by the interplay of soft-
ware users, vendor, community and AI systems, that perfectly fits the current needs of
a user.

Limitations. As concepts presented have been demonstrated by a software prototype,
the focus of this contribution has laid on the proof of concept. Neither the NTML nor
the dynamic GUI adaptation have been evaluated on a quantitative empirical base, such
as customer feedbacks about the application performance increase or their acceptance
about GUI adaptation by customers in general. This restricts the validity of evaluation
results.

Outlook. Although the functioning of the NTML was demonstrated by a learning task
example, its usage becomes particular effective when the NTML is integrated in a mod-
eling tool, such as demonstrated by the CoNM [3]. Since the NTML refers to a subset
of the CoNM’s NMDL standard, the example presented has been realized on behalf of
the CoNM. Here, the training has been concretized on the basis of recurrent ANN struc-
tures. Outlined research will focus on the efficient learning task model creation by sur-
veying cooperative model constructors.

Further research will also extend the example collection showing more versatile
learning tasks and process designs than the ones presented. This supports the applica-
bility to many learning contexts and research domains.

Future NTML examples shall contain temporal dynamics, learning modes (super-
vised, unsupervised and reinforced learning) [22], codification schemes [23] and learn-
ing problems (clustering, classification and regression) [24]. Here, research will need
to discuss if the NTML shall provide further parameters, so that it is (1) more concrete
and can specify the use of different concrete neuronal mechanisms similar to the origi-
nal NMDL, and it is (2) further abstracted and can specify the use of any sort of AI
mechanism, such as evolutionary algorithms, fuzzy systems, Bayesian networks or
probabilistic methods. Please note, either algorithm-specific NTML extensions or the
composition of modeling languages can be identified as design alternatives. Both ak-
terbatuves support the creation of clear models, which are created on the basis of mod-
eling languages with compact syntax. Instead, one joint Machine Learning Modeling
Language (MLML) can be imagined, whose syntax is not compact. However, it would
be very powerful.

Further research shall focus on the creation of conformity checks, that will analyze
if training task designs are appropriate. An example can be found in Fig. 7: It is essential

15

that the knowledge objects called “User-Induced Acquisition” and “Exit” both provide
categorial data, so that these are allowed to be grouped to the knowledge object called
“Recommendation of Process Instance XY”. Otherwise, the learning task cannot be
carried out properly.

References

1. Grum, M., Bender, B., Alfa, A.S., Gronau, N.: A decision maxim for efficient task realiza-
tion within analytical network infrastructures. Decis. Support Syst. (2018).
https://doi.org/10.1016/j.dss.2018.06.005.

2. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing models: a
survey. Int. J. Grid Distrib. Comput. 6, 93–106 (2013).

3. Grum, M.: Concept of Neuronal Modeling (CoNM). , https://github.com/Mar-
cusGrum/CoNM.

4. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The
Design Science Research Process: A Model for Producing and Presenting Information Sys-
tems Reseach. 1st Int. Conf. Des. Sci. Inf. Syst. Technol. DESRIST. 24, 83–106 (2006).

5. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Manag. Inf. Syst. 24, 45–78 (2007).

6. The Theano Development Team: Theano: A Python framework for fast computation of
mathematical expressions. ArXiv E-Prints. (2016).

7. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S.,
Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. CoRR.
abs/1408.5093, (2014).

8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. CoRR. abs/1912.01703, (2019).

9. Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mané, D., Fritz, D., Krishnan,
D., Viégas, F.B., Wattenberg, M.: Visualizing Dataflow Graphs of Deep Learning Models
in TensorFlow. IEEE Trans. Vis. Comput. Graph. 24, 1–12 (2018).

10. Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., Silver, R.A.:
LEMS: a language for expressing complex biological models in concise and hierarchical
form and its use in underpinning NeuroML 2. Front. Neuroinformatics. 8, 79 (2014).
https://doi.org/10.3389/fninf.2014.00079.

11. Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse,
T.M., Davison, A.P., Ray, S., Bhalla, U.S., Barnes, S.R., Dimitrova, Y.D., Silver, R.A.:
NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with
a High Degree of Biological Detail. PLOS Comput. Biol. 6, 1–19 (2010).
https://doi.org/10.1371/journal.pcbi.1000815.

12. van der Aalst, WMP.: Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In: Desel, J., Reisig, W., and Rozen-
berg, G. (eds.) Lectures on Concurrency and Petri Nets: Advances in Petri Nets. pp. 1–65.

16

Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
27755-2_1.

13. List, B., Korherr, B.: An Evaluation of Conceptual Business Process Modelling Languages.
In: Proceedings of the 2006 ACM Symposium on Applied Computing. pp. 1532–1539.
ACM, New York, NY, USA (2006). https://doi.org/10.1145/1141277.1141633.

14. Sultanow, E., Zhou, X., Gronau, N., Cox, S.: Modeling of Processes, Systems and
Knowledge: a Multi-Dimensional Comparison of 13 Chosen Methods. Int. Rev. Comput.
Softw. IRECOS. 3309–3319 (2012).

15. Grum, M., Gronau, N.: Process Modeling within the Augmented Reality - The Bidirectional
Interplay of Two Worlds. In: Proceedings of the Eighth BMSD. pp. 206–214 (2018).

16. van der Aalst, WMP: Formalization and verification of event-driven process chains. Inf.
Softw. Technol. 41, 639–650 (1999). https://doi.org/10.1016/S0950-5849(99)00016-6.

17. Rosing, M. von, White, S., Cummins, F., Man, H. de: Business Process Model and Notation
(BPMN). In: Rosing, M. von, Scheer, A.-W., and Scheel, H. von (eds.) The Complete Busi-
ness Process Handbook. pp. 433–457. Morgan Kaufmann, Boston (2015).
https://doi.org/10.1016/B978-0-12-799959-3.00021-5.

18. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Ad-
dison-Wesley (2005).

19. Karagiannis, D., Telesko, R.: The EU-Project PROMOTE: A Process-oriented Approach
for Knowledge Management. In: Proc. of the Third Int. Conf. of Practical Aspects of
Knowledge Management. (2000. pp. 9–18 (2000).

20. Heisig, P.: The GPO-WM® Method for the Integration of Knowledge Management into
Business Processes. In: International Conference on Knowledge Management. pp. 331–337.
, Graz, Austria (2006).

21. Gronau, N.: Modeling and Analyzing knowledge intensive business processes with KMDL.
Comprehensive insights into theory and practice. Gito (2012).

22. Deru, M., Ndiaye, A.: Deep Learning mit TensorFlow, Keras und TensorFlow.js: Einstieg,
Konzepte und KI-Projekte mit Python, JavaScript und HTML5. Rheinwerk Verlag GmbH
(2019).

23. Kruse, R., Borgelt, C., Braune, C., Klawonn, F., Moewes, C., Steinbrecher, M.: Computa-
tional Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolu-
tionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze. Springer Fachmedien Wiesbaden
(2015).

24. Nauck, D., Borgelt, C., Klawonn, F., Kruse, R.: Neuro-Fuzzy-Systeme: Von den Grundla-
gen künstlicher Neuronaler Netze zur Kopplung mit Fuzzy-Systemen. Vieweg+Teubner
Verlag (2013).

25. Cresswell, J.W.: Die Entwicklung der Mixed-Methods-Forschung. In: Kuckartz, U. (ed.)
Mixed Methods: Methodologie, Forschungsdesigns und Analyseverfahren. pp. 13–26.
Springer Fachmedien Wiesbaden (2014).

26. Kuckartz, U.: Mixed Methods: Methodologie, Forschungsdesigns und Analyseverfahren.
Springer Fachmedien Wiesbaden (2014).

27. Masaaki, I.: Kaizen: The key to Japan’s competitive success. N. Y. Ltd McGraw-Hill.
(1986).

28. Konar, A.: Computational Intelligence: Principles, Techniques and Applications. Springer
Berlin Heidelberg (2006).

